平成 28 年度湿性沈着調査結果

大気環境部

篠崎 絵美¹ 石原島 栄二 (1 前保健環境センター)

1 はじめに

酸性雨は、原因物質が長距離にわたって移動し、その 影響は原因が発生した国内にとどまらず、国境を越えて 広がる恐れがあることから、地球規模の環境問題の一つ として位置付けられている。

日本における酸性雨問題は、昭和40年代後半頃から社会問題化し、さまざまな調査が実施されてきた。また平成3年度からは、その広域汚染の実態を把握するため、酸性雨に関する全国調査が実施されている。

本県では独自のモニタリング調査として、昭和60年度から、ろ過式採取装置を用いた酸性降下物調査を実施してきた。平成15年度からは、雨水中に溶解している物質について把握するため、河内町(現宇都宮市)で、平成20年度からは日光市及び小山市でも、湿性沈着調査を行っている。

本報告は、平成28年度の雨水中の湿性沈着調査結果をとりまとめたものである。

2 調查方法

2.1 調査期間

平成28年4月4日~平成29年4月3日(1年間)

2.2 調査地点

- ① 日光市(日光市丸山浄水場)
- ② 宇都宮市(栃木県保健環境センター)
- ③ 小山市 (栃木県県南健康福祉センター)

2.3 採取方法

環境省の「湿性沈着モニタリング手引き書(第2版)」 に従い、自動雨水採水器(㈱小笠原計器製作所製 US-330H、採取口面積314cm²)を用いて、2週間単位で試 料の採取を行った。

2.4 分析項目及び分析方法

pH:ガラス電極法

EC: 電気導電率計による方法

イオン成分(SO₄²⁻、NO₃-、C1-、NH₄+、Na+、K+、Ca²⁺及び

Mg²⁺):イオンクロマトグラフ法

表 1 湿性沈着調査結果(日光市)

	採取期間	降水量	рН	EC				濃度(m	ıg/L)			
月	開始日 終了日	mm		μS/cm	$S0_4^{2-}$	$\mathrm{NO_3}^-$	C1 ⁻	$\mathrm{NH_4}^+$	Na ⁺	K ⁺	Ca ²⁺	Mg ²⁺
4	$4/4 \sim 5/2$	137. 4	6.05	4.67	0.55	0.41	0.23	0.16	0.14	0.06	0.13	0.03
5	$5/2 \sim 5/30$	90. 3	5.91	4.84	0.45	0.40	0.13	0.18	0.07	0.27	0.11	0.04
6	$5/30 \sim 6/27$	143. 1	6.01	6.21	0.66	0.60	0.09	0.14	0.04	0.11	0.25	0.04
7	$6/27 \sim 7/25$	112.5	5.05	10.10	0.91	0.73	0.08	0.32	0.03	0.02	0.04	0.00
8	$7/25 \sim 9/5$	536. 1	5. 16	4.22	0.31	0.26	0.11	0.07	0.07	0.01	0.02	0.01
9	$9/5 \sim 10/3$	411.6	5.14	5.51	0.44	0.39	0.07	0.07	0.03	0.02	0.02	0.00
10	$10/3 \sim 10/31$	89.0	5.41	6.33	0.62	0.50	0.33	0.04	0.19	0.27	0.17	0.05
11	$10/31 \sim 11/28$	89. 3	5. 78	3.91	0.42	0.17	0.13	0.02	0.08	0.18	0.22	0.03
12	$11/28 \sim 12/26$	54. 7	5.83	3.58	0.37	0.22	0.15	0.04	0.09	0.08	0.15	0.03
1	$12/26 \sim 2/6$	63. 7	6.38	8.50	0.82	0.31	0.99	0.08	0.58	0.05	0.16	0.08
2	$2/6 \sim 3/6$	27.5	5.06	17.39	2.30	0.94	1.34	0.32	0.55	0.08	0.67	0.12
3	$3/6 \sim 4/3$	47. 9	5.06	8.95	0.75	0.92	0.17	0.21	0.09	0.03	0.16	0.02
	年計	1,803.1										
	加重平均		5. 29	5.65	0.51	0.40	0.17	0.11	0.09	0.06	0.09	0.02

^{8、9}月はオーバーフローがあったため、最寄の気象官署の降水量を用いて濃度を算出した。

表 2 湿性沈着調査結果 (宇都宮市)

	採取期間	降水量	рН	EC				濃度(m	ıg/L)			
月	開始日 終了日	mm		μS/cm	${\rm S0_4}^{2^-}$	${ m NO_{3}}^{-}$	C1 ⁻	$\mathrm{NH_4}^+$	Na ⁺	K^+	Ca ²⁺	${\rm Mg}^{2^+}$
4	$4/4 \sim 5/2$	136.8	5.46	13.99	1.54	1.85	0.81	0.67	0.49	0.10	0.35	0.10
5	$5/2 \sim 5/30$	92. 5	5.50	11.43	1.14	1.24	0.57	0.47	0.31	0.06	0.18	0.06
6	$5/30 \sim 6/27$	97.4	4.62	26.75	2.55	2.88	0.78	0.81	0.44	0.13	0.33	0.08
7	$6/27 \sim 7/25$	93. 6	5.12	22.46	2.61	3.06	0.41	1.34	0.23	0.05	0.17	0.04
8	$7/25 \sim 9/5$	402.5	5.00	9.78	0.82	0.83	0.43	0.28	0.24	0.02	0.06	0.03
9	$9/5 \sim 10/3$	457. 5	5.00	9.59	0.81	1.00	0.24	0.32	0.12	0.01	0.04	0.01
10	$10/3 \sim 10/31$	63. 5	5.04	13.85	1.14	1.14	1.22	0.34	0.73	0.05	0.16	0.10
11	$10/31 \sim 11/28$	103.7	5.50	5.98	0.60	0.54	0.36	0.22	0.22	0.02	0.11	0.03
12	$11/28 \sim 12/26$	67.4	5. 59	6.64	0.48	0.61	0.54	0.25	0.34	0.02	0.08	0.05
1	$12/26 \sim 2/6$	24. 1	5.62	10.99	1.32	0.91	0.37	0.52	0.18	0.02	0.20	0.04
2	$2/6 \sim 3/6$	20.6	5. 29	22.83	2.43	4.19	1.14	1.24	0.62	0.10	1.07	0.14
3	$3/6 \sim 4/3$	62. 7	5. 19	12.89	1.40	1.55	0.68	0.72	0.30	0.08	0.27	0.06
	年計	1, 622. 3										
	加重平均		5.06	12.02	1.14	1.30	0.49	0.46	0.27	0.04	0.14	0.04

^{8、9}月はオーバーフローがあったため、最寄の気象官署の降水量を用いて濃度を算出した。

	採取期間	降水量	рН	EC				濃度(n	ng/L)			
月	開始日 終了日	mm		μS/cm	SO ₄ ²⁻	NO_3^-	C1	$\mathrm{NH_4}^+$	Na ⁺	K ⁺	Ca ²⁺	${\rm Mg}^{2+}$
4	$4/4 \sim 5/2$	112.2	5.43	13. 01	1.49	1.78	0.69	0.74	0.41	0.09	0.32	0.08
5	$5/2 \sim 5/30$	88.5	5.00	12. 11	2.12	2.06	0.69	0.78	0.33	0.06	0.20	0.06
6	$5/30 \sim 6/27$	90.8	4.85	19.42	2.32	2.27	0.70	0.87	0.35	0.05	0.43	0.07
7	$6/27 \sim 7/25$	83.6	5.32	17.07	2.08	2.63	0.38	0.98	0.21	0.10	0.52	0.05
8	$7/25 \sim 9/5$	249.6	5.32	7. 78	0.71	0.60	0.52	0.30	0.30	0.02	0.12	0.06
9	$9/5 \sim 10/3$	297.0	5.36	7. 29	0.73	0.83	0.38	0.41	0.19	0.03	0.12	0.03
10	$10/3 \sim 10/31$	69.6	5.83	14.02	1.33	1.59	1.28	0.71	0.75	0.07	0.35	0.12
11	$10/31 \sim 11/28$	101.2	5.85	7. 37	0.77	0.77	0.50	0.30	0.29	0.05	0.29	0.07
12	$11/28 \sim 12/26$	52.4	5.94	9.09	0.70	0.87	0.44	0.45	0.25	0.04	0.61	0.09
1	$12/26 \sim 2/6$	12.4	4.88	19.31	3.15	2.09	1.30	1.10	0.66	0.32	1.71	0.18
2	$2/6 \sim 3/6$	13. 2	5.96	32. 75	3.25	4.33	1.44	1.13	0.71	0.18	3.03	0.28
3	$3/6 \sim 4/3$	55. 3	5.64	12.87	1.48	1.62	0.70	0.69	0.36	0.09	0.68	0.11
	年計	1, 225. 8										
	加重平均		5. 30	10.94	1.23	1.31	0. 58	0.55	0.32	0.05	0.32	0.07

表 3 湿性沈着調査結果(小山市)

9月はオーバーフローがあったため、最寄の気象官署の降水量を用いて濃度を算出した。

なお、各試料の測定結果について、概ね月単位となるように4~6週間分をまとめ、降水量による加重平均等の操作により平均化し、各月のデータを得た。

3 調査結果

3.1 概要

平成 28 年度の各調査地点における調査結果を表 1~3 に、降水量及びpHの経月変化を図 1 に、総沈着量及びEC の経月変化を図 2 に示す。

各イオン成分の沈着量は式①により求め、総沈着量は それらを合計して求めた。各イオン成分濃度及びECの加 重平均値は、降水量で重み付けした平均値として、次式 ②により求め、pHの加重平均値は、式③により算出した。

- ① 沈着量= (各月のイオン成分濃度)×Qi (各イオン成分の分子量)
- ② 加重平均値= $\frac{\Sigma(($ 各月のイオン成分濃度 $) \times Qi)}{\Sigma Qi}$
- ③ pH 加重平均值= $-\log \frac{\sum (10^{-pHi} \times Qi)}{\sum Qi}$

※pHi:各月のpH値,Qi:各月の降水量

3.2 降水量

年間降水量は、表1~3の年計のとおりである。なお、 日光市及び宇都宮市の8月と全地点の9月については、 採取容器からオーバーフローしたため、最寄りの気象官 署が公表した降水量を用いた。

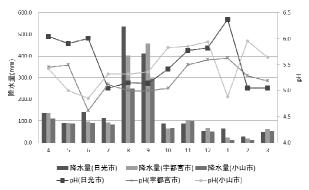


図1 各地点の降水量及び pH の経月変化

平成28年度の年間降水量は、日光市で1,803mm と最も 多く、次いで宇都宮市の1,622mm、小山市の1,226mm であ り、日光市と小山市とでは1.5倍程度の差があった。

月ごとの特徴としては、日光市では8月、宇都宮市及び小山市では9月に降水量が最も多く、小山市では1月、日光市及び宇都宮市では2月が最も少なかった。ただし、日光市以外では1月と2月の降水量は同程度であった。

3.3 pH 及び EC

平成 28 年度の pH 加重平均値は、日光市が 5.29、宇都宮市が 5.06、小山市は 5.30 であった。pH は日光市では 7月、宇都宮市及び小山市では 6月に最も低く、それぞれ 5.05、4.62 及び 4.85 であった。一方、最も高かったのは、日光市及び宇都宮市では 1月の 6.38 及び 5.62、小山市では 2月の 5.96 であった。

EC の加重平均値は、日光市で 5.65μ S/cm、宇都宮市で 12.02μ S/cm、小山市で 10.94μ S/cm であった。月ごとに みると、日光市及び小山市で 2 月が最も高く、それぞれ 17.39μ S/cm 及び 32.75μ S/cm、宇都宮市では 6 月が最も高く、 26.75μ S/cm であった。また、最も低い値となった のは、日光市では 12 月、宇都宮市では 11 月、小山市では 9 月で、それぞれ 3.58μ S/cm、 5.98μ S/cm 及び 7.29μ S/cm あった。

3.4 イオン成分濃度

イオン成分濃度の加重平均値は、日光市でK*以外のイオン成分が、他地点よりも低めであり、宇都宮市と小山市は、 Ca^2 大及び Mg^2 *を除き同程度であった。

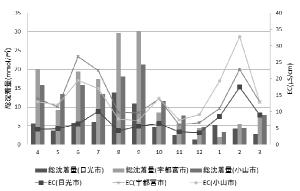


図 2 各地点の総沈着量及び EC の経月変化

年間の経月変化をみると、全地点で、降水量が多かった8月または9月に、濃度が低くなるイオン成分が多く、降水量の少なかった1月または2月に、濃度が高くなるイオン成分が多かった。また、日光市と宇都宮市においては、 $N0_3$ -及び NH_4 -は11月に、宇都宮市と小山市の $S0_4$ -は12月に濃度が低下していた。

また、宇都宮市では SO_4^2 が6月から7月にかけて、 NH_4^+ が7月に、宇都宮市と小山市では CI^- と Na^+ が10月に、それぞれ濃度が上昇していた。

また、日光市の NO_3 は $0.17\sim0.94mg/L$ の範囲で推移しており、年間を通して他の 2 地点よりも変動が少なく、低い濃度であった。Kは、地点ごとに固有の変動が見られ、日光市では 5 月と 10 月、宇都宮市では 6 月、小山市では 1 月に高い値を示した。

3.5 沈着量

各調査地点における各イオン成分の月別沈着量を表 4 ~6 に示す。

平成 28 年度のイオン成分総沈着量は、日光市では陰イオンが 30.1 mmol/ m^2 、陽イオンが 36.1 mmol/ m^2 、宇都宮市では陰イオンが 75.4 mmol/ m^2 、陽イオンが 84.7 mmol/ m^2 、小山市では陰イオンが 61.8 mmol/ m^2 、陽イオンが 75.3 mmol/ m^2 であった。いずれも日光市、小山市、宇都宮市の順で多くなっていたが、宇都宮市と小山市とでは差は小さかった。ただし成分ごとにみると、 Na^+ と NH_4^+ 以外の陽イオン成分の沈着量は、この順位とは一致していなかった。

比較的降水量の多かった8月または9月に、各地点で $SO_4^{2^{\circ}}$ 、 NO_3° 、 $C1^{\circ}$ 、 Na^{\dagger} 、 NH_4^{\dagger} 及びH'の沈着量が高い値を示していたことから、これらの沈着に降水量が関係していることが示唆された。なお K[†]は、日光市では5月、6月、10月及び11月に、宇都宮市では4月と6月に、小山市では4月にそれぞれ沈着量が多くなっていた。

 SO_4^2 と NO_3 の沈着量を比較すると、日光市の $11\sim2$ 月を除き、 NO_3 の方が多かった。日光市は 8 月と 3 月を除いて、他の 2 地点よりも NO_3 / SO_4 2の値が低くなる傾向が見られた。 すべての地点及び月について、図 3 のとおり SO_4 2と NO_3 の沈着量非常に強い相関が見られた(R = 0.977)。

4 参考文献

 栃木県保健環境センター大気環境部,平成27年度湿性 沈着調査結果,栃木県保健環境センター年報,第21 号,120-122,2016.

表 4 各イオン成分の沈着量(日光市)

	沈着量(mmo1/m²)											
月	$S0_4^{2-}$	$\mathrm{NO_3}^-$	C1-	$\mathrm{NH_4}^+$	Na ⁺	K ⁺	Ca ²⁺	${\rm Mg}^{2+}$	H^{+}			
4	0.79	0.90	0.89	1.23	0.87	0.21	0.45	0.15	0.12			
5	0.43	0.58	0.34	0.91	0.28	0.62	0.24	0.15	0.11			
6	0.98	1.38	0.34	1.09	0.23	0.39	0.91	0.25	0.14			
7	1.07	1.33	0.24	2.01	0.16	0.06	0.11	0.02	1.00			
8	1.74	2.28	1.68	2.09	1.61	0.15	0.32	0.19	3.74			
9	1.90	2.60	0.81	1.52	0.53	0.22	0.22	0.08	2.95			
10	0.58	0.72	0.84	0.21	0.72	0.62	0.37	0.17	0.34			
11	0.39	0.24	0.33	0.08	0.33	0.41	0.50	0.12	0.15			
12	0.21	0.19	0.22	0.12	0.21	0.11	0.20	0.06	0.08			
1	0.55	0.31	1.77	0.27	1.62	0.09	0.26	0.22	0.03			
2	0.66	0.42	1.04	0.49	0.66	0.05	0.46	0.13	0.24			
3	0.38	0.71	0.23	0.56	0.18	0.03	0.19	0.05	0.42			
年計	9.68	11.66	8.73	10.58	7.40	2.96	4.23	1.59	9.32			

表 5 各イオン成分の沈着量(宇都宮市)

月	沈着量(mmol/m²)										
Я	$S0_4^{2-}$	$\mathrm{NO_3}^-$	C1-	$\mathrm{NH_4}^+$	Na ⁺	K ⁺	Ca ²⁺	${\rm Mg}^{2+}$	H^{+}		
4	2.20	4.08	3.12	5.08	2.92	0.36	1.21	0.55	0.48		
5	1.10	1.85	1.48	2.43	1.24	0.14	0.42	0.21	0.30		
6	2.59	4.53	2.15	4.37	1.86	0.33	0.79	0.34	2.34		
7	2.54	4.63	1.07	6.94	0.94	0.13	0.39	0.14	0.71		
8	3.44	5.38	4.87	6.33	4.22	0.25	0.61	0.51	4.03		
9	3.85	7.37	3.15	8.11	2.29	0.15	0.44	0.27	4.57		
10	0.76	1.17	2.18	1.19	2.01	0.09	0.26	0.26	0.57		
11	0.65	0.90	1.07	1.28	1.01	0.05	0.28	0.13	0.33		
12	0.34	0.67	1.02	0.94	1.01	0.03	0.14	0.13	0.17		
1	0.33	0.36	0.25	0.69	0.19	0.02	0.12	0.04	0.06		
2	0.52	1.39	0.66	1.42	0.56	0.05	0.55	0.12	0.11		
3	0.92	1.57	1.21	2.50	0.83	0.13	0.43	0.16	0.41		
年計	19.24	33.90	22.23	41.28	19.08	1.73	5.64	2.86	14.08		

表6各イオン成分の沈着量(小山市)

月		沈着量(mmol/m²)											
Л	$S0_4^{2-}$	NO_3	C1-	$\mathrm{NH_4}^+$	Na ⁺	K ⁺	Ca ²⁺	${\rm Mg}^{2+}$	H^{+}				
4	1.75	3. 22	2.19	4.63	1.98	0.27	0.91	0.38	0.42				
5	1.95	2.94	1.72	3.82	1.27	0.14	0.45	0.22	0.88				
6	2. 19	3.33	1.80	4.40	1.39	0.11	0.97	0.28	1.27				
7	1.81	3.54	0.90	4.54	0.77	0.20	1.08	0.18	0.40				
8	1.84	2.41	3.66	4.19	3.23	0.15	0.77	0.61	1.20				
9	2. 25	3.97	3.15	6.70	2.46	0.22	0.87	0.41	1.30				
10	0.97	1.79	2.51	2.73	2.27	0.13	0.60	0.35	0.10				
11	0.81	1.25	1.44	1.66	1.29	0.12	0.73	0.29	0.14				
12	0.38	0.73	0.65	1.32	0.56	0.05	0.79	0.19	0.06				
1	0.41	0.42	0.46	0.76	0.35	0.10	0.53	0.09	0.16				
2	0.45	0.92	0.54	0.83	0.40	0.06	1.00	0.15	0.01				
3	0.85	1.45	1.10	2.12	0.86	0.13	0.94	0.25	0.13				
年計	15.66	25.97	20.12	37.70	16.83	1.68	9.64	3.40	6.07				

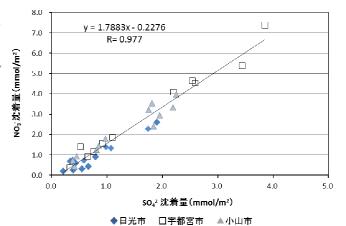


図3 全地点における SO₄2-と NO₃-月間沈着量の相関